Determine if each statement is true or false.

(b) False

(a) True

3. The value of e may be found using the limit

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

- 4. If f(x) is not differentiable at a, then it is not continuous at a.
 - (a) True

- 5. If f'(x) = g'(x) for every x, then f(x) = g(x) for every x.
 - (a) True
- For example, let fox) = x2 and q(x) = x2+1
- 6. If f(x) is a polynomial of degree k, then the higher derivative $f^{k+1}(x)$ is zero.
 - - (b) False

9. Let
$$f(x) = \frac{100x + x^2 + x^3}{x}$$
. Find a value a such that $f'(a) = 5$.

f(x)=100+X+X2

f'(x) = 1 + 2x f'(a) = 1 + 2a = 52a = 4

- (a) -3
- (b) -2
- (c) -1
- (d) 0
- (e) 1(f) 2
 - (g) 3
 - (h) 6
 - (i) none of the above

10. Let $f(x) = e^{\frac{x}{k}}$. For what value of k does $f''(0) = \frac{1}{4}$?

a=2

(h) 6

(g) 3

(i) none of the above

- 13. Let $f(x) = \ln(\ln(\ln(x)))$. What is f'(x)?
 - - (c) the sum of the answers (a) and (b) above
 - (d) $\frac{1}{r^3}$
 - (e) none of the above
 - By the chain rule: f'(x)= 1 ln(lnx) enx x

- 14. Consider the circle given by $x^2 + y^2 = 1$. Find the equation for the line tangent to the circle at $P(\frac{3}{5}, -\frac{4}{5}).$ Implicit differentiation
 - (a) $y + \frac{4}{5} = -\frac{3}{4}(x \frac{3}{5})$
 - (b) $y \frac{4}{5} = -\frac{3}{5}(x \frac{3}{4})$

 - (d) $y + \frac{4}{5} = \frac{3}{4}(x \frac{3}{5})$
 - (e) $y + \frac{3}{5} = \frac{3}{4}(x \frac{4}{5})$
 - (f) none of the above

17. Let $f(x) = x^x$. Then the derivative f'(x) is

- (a) xx^{x-1}
- (b) $ln(x)x^x$
- (c) the sum of the answers (a) and (b) above
 - (d) none of the above

18. Let $f(x) = e^2$. Then the derivative f'(x) is

- (a) e^{2}
- (b) 2e
- (c) the sum of the answers (a) and (b) above

C= constant, st the derivative is O.

(d) 0 (e) none of the above Written Problem. Clearly show all steps to receive full credit.

20. Use the given graph of f(x) to answer the questions below.

- (a) On the same axes as the graph, sketch the derivative of the given function.
- (b) Give an x value where the graph is continuous but not differentiable. Briefly explain why f is not differentiable.

ato, f(x) is continuous but there is a corner and it is not differentiable.

(c) List the intervals where the function is increasing.

$$(-1,0),(0,2).$$

(d) List the intervals where the derivative of the function is negative.

$$(-\infty,-1),(\frac{1}{2},\frac{3}{2}),(4,\infty)$$
or some reasonable bound

Written Problem. Clearly show all steps to receive full credit.

22. Find the derivative $\frac{dy}{dx}$, using whatever technique is appropriate.

(a)
$$y = x^{\sin(x)}$$
 Logarithmic Differentiation
 $lny = ln(x^{\sin x})$ $y = lny = sinx lnx$

(b)
$$x^2 + y^2 = xy + 1$$

$$2X + 2yy' = y + Xy'$$

$$y'(2y - x) = y - 2x$$

$$y'' = \frac{y - 2x}{2y - x}$$

(c)
$$y = \sqrt{\frac{(x^2+4x+12)^3}{(x^3+1)^4}}$$

$$\ln y = \ln \left(\sqrt{\frac{(x^3+1)^4}{(\chi^2+1)^4}} \right) = \frac{3}{3} \ln \chi^2 + 4\chi + 12 - \frac{4}{3} \ln \chi^3 + 1$$

$$\frac{1}{1} y' = \frac{3}{2} \frac{2X+4}{X^2+4X+12} - 2 \frac{3X^2}{X^3+1}$$

$$\frac{1}{\chi^2+4\chi+12}-\frac{6\chi}{\chi^3+1}$$

y = y (cosx lnx + sinx)